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Small-scale variation of convected quantities like 
temperature in turbulent fluid 

Part 2. The case of large conductivity 

By G. K. BATCHELOR, I. D. HOWELLS AND A. A. TOWNSEND 
Cavendish Laboratory, University of Cambridge 

(Received 1 July 1968) 

The analysis reported in Part 1 is extended here to the case in which the con- 
ductivity K is large compared with the viscosity v, the conduction ‘cut-off’ to the 
8-spectrum then being at wave-number ( 4 ~ ~ ) ) .  It is shown, with a plausible and 
consistent hypothesis, that the convective supply of @-stuff to Fourier corn- 
ponents of 8 with wave-numbers n in the range ( C Z / K ~ ) &  < n < (s/v3)) is due 
primarily to motion on a length scale of order n-l acting on a uniform gradient of 
8 of magnitude [(vB)2]*. The consequent form of the 8-spectrum within this same 
wave-number range is r(n) = ?&xE+K-~~+. 

The way in which conduction influences (and restricts) the effect of convection on 
the distribution of t9 at these wave-numbers beyond the conduction cut-off is 
discussed. 

It was shown in Part 1 (Batchelor 1959) that, when V / K  < 1, there is a con- 
vection subrange of wave-numbers defined by L-l < n < (s//c3)) within which the 
0-spectrum has the form 

(the notation being everywhere as in Part 1). The direct effect of molecular 
conduction is unimportant at  wave-numbers within this range, but becomes 
important when n is of order ( s / ~ ~ ) & .  Over the more extensive inertial subrange 
of wave-numbers defined by L-l < n < (e/v3)f, the velocity spectrum has the 
form 

the direct effect of viscosity becomes important at wave-numbers of order ( E / Y ~ ) * ,  

and causes E(n) then to fall off much more rapidly than according to the power 
law (2). 

The problem here is to find the form of the 8-spectrum at wave-numbers 
beyond those for which (1) is valid. Provided we confine attention to the wave- 
number range L-1 < n < (s/v3)~-which is not a serious practical limitation, since 
wave-numbers of order (e/v3)* lie well beyond the conduction ‘cut-off’ of the 
0-spectrum and the corresponding values of r(n) will presumably be extremely 
small-the parameters relevant to the form of the 0-spectrum are E ,  x and K ,  so 
that the general form of r(n) is 

r(n) = Xe-fn-5 x function of (&-&), 

r(n) cc Xe-+n-* (1) 

E(n)  = Ce%-Q; (2) 
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the function being a constant when n < ( 4 ~ 3 ) i .  In order to find the analytical 
form of this function it will be necessary to consider the specific mechanism by 
which the various Fourier components of the spatial distribution of 8 are acted on 
by the velocity field. 

The equation governing local variations of 0 is 

ae 
- + u . ve = Kv2e, 
at (3) 

and, ifA(n) and B(n) are Fourier coefficients of the spatial distributions of u and 0, 
an equivalent equation is 

3 at + i /n IA,  (n - n’) B(n’) dn‘ = -KnzB(n). (4) 

Thus a steady 0-spectrum can be maintained at wave-number n against the 
purely dissipative action of conductivity only by a net gain of @stuff resulting 
from the interaction of pairs of Fourier components represented byA(n - n’) and 
B(n’). The essence of a theory of the effect of a turbulent velocity field on the 
0-field lies in a correct estimate of the values of n’ for which the interaction of the 
corresponding pairs of Fourier components makes a dominant contribution to 
the supply of @-stuff. 

Now over the range ( s / ~ 3 ) 4  < n < (e /v3) )  the &spectrum probably falls off 
rapidly as a consequence of the direct action of conductivity, whereas the 
u-spectrum falls off at  the relatively slow rate given by (2). This difference in the 
behaviour of the amplitudes of A and B can be made the basis for a hypothesis 
about the values of n’ at which the dominant contributions to the integral in (4) 
are made when ( 4 ~ ~ ) )  < n < (s /v3) i .  For these dominant contributions will pre- 
sumably come from values of n’ at which IB(n’)l does not have the small values 
resulting from the action of conduction, that is, from values of n‘ of order ( c / K ~ ) ~  

or less. Further discussion of the hypothesis that these are the important values 
of n‘ will be given after the consequences have been examined. Notice that the 
restriction n < (s/v3)* is significant because only for such values of n does IA(n)I 
vary so (relatively) slowly that the dominant range is determined by the behaviour 
of IBI alone. 

Before determining the spectrum of 0 with the help of this hypothesis, we shall 
show that the time derivatives in (3) and (4) are negligible. Equation (3) can be 
thought of as equivalent to  an equation for the temperature in a solid of con- 
ductivity K with the second term on the left-hand side representing a distributed 
source of heat. If this source were steady in time, a Fourier component of t9 with 
wave-number n would become steady in a time of order K-1n-2 subsequent to the 
imposition of arbitrary initial conditions. The source term is not in fact steady, 
since the velocity field varies with t .  However, it has been supposed that the 
relevant Fourier components of u in (4) are those with wave-number near n; 
for those components the characteristic time (n being a wave-number magnitude 
within the inertial subrange) is d n - 8 ,  which is large compared with K-ln-2 when 
n 9 (4~~) ) .  Thus, the source term is approximately steady, and the time derivative 
in (4) can be dropped when ( 4 ~ ~ ) ’  < n < (e/v3)k Time derivatives like ar(n)/at 
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are in any case negligible at  large wave-numbers within the equilibrium range, 
but we have now shown that it is possible to go further and neglect terms like 
[8B(n)/8tI2. 

It now follows from (4) that 

* * 1.l * 
/c2n4B(n) B(n) = n;n; A,  (n- n’) Aj (n - n”) B(n’) B(n”) dn’ dn”, (5) 

where the star denotes a complex conjugate. As explained, the integral in (4) is 
assumed to be dominated by values of n’ such that [ n - n‘l B n‘; in these circum- 
stances, the statistical connexion between A(n - n’) and B(n’) may be neglected 
(although both quantities have non-negligible connexions with B(n)) and the 
mean value on the right-hand side of (5) splits into two. Then, on making use of 
the orthogonality of Fourier coefficients, we have 

* * s (6) 
* 

~ ~ n ~ B ( n )  B(n) = mi n; A( (n - n’) Ai (n - n’) B(n’) B(n’) dn’. 

A further consequence of the relation In - n’ I % n‘ is that 

* * 
A,  (n - n’) A, (n - n’) M Ai (n) Aj (n), 

so that 
* -m 

/c2n4B(n) B(n) M Ai (n) Aj (n) - ax, - ax, , 

= +ti (n) 2i (n) (m, ( 7 )  

in view of the isotropy of the (small-scale part of the) 0-field. The form of the 
@-spectrum for wave-numbers in the range (e//c3)4 Q n < (e/v3)4 is therefore given 
in terms of the kinetic energy spectrum function E(n) by 

x /c2n4r(n) = fE(n)--, 
2 K  

that is, by r(n) = gCX€k-3n-v. (9) 

This relation is certainly consistent with our assumption that r(n)  falls off 
rapidly at wave-numbers beyond ( 4 / c 3 ) f  and that, so far as may be estimated from 
a consideration of magnitudes of Fourier coefficients, the supply of B2-stuff to 
Fourier components of 6 with wave-numbers n in the range (e/.3)* < n < (c/v3)* 
will be dominated by direct interaction of components of u with wave-numbers in 
this same range and components of 0 with smaller wave-numbers (of order (s//c3)4 
or less). Again we note that the same assumption cannot be made about the 
supply of @-stuff to Fourier components of 0 with wave-numbers of order (~/V3)4 
or larger, because at these wave-numbers the energy spectrum E(n) is also falling 
off rapidly (in fact, if both E(n) and F(n)  fall off faster than exponentially at  
these high wave-numbers where both viscosity and conduction have important 
effects, as seems quite probable, the values of n‘ at which the integrand in (4) is 
greatest will lie in the neighbourhood of some fraction of n, the fraction being 8 if 
the two functions happen to diminish in the same way). Nor does the argument 
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give the form of r(n) in the region of transition from the power-law ( 1 )  to the 
power-law (9) at wave-numbers of order ( e / ~ ~ ) $  (where (1) and (9) do agree in 
giving the order of magnitude of r(n) as X&-’). However, neither of these 
limitations of the argument is of much importance. The available information 
about F(n) is shown schematically in figure 1. 
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FIGURE 1. Spectra of 0 and u in the equilibrium range of wave-numbers for the 
case v < K. 

It may be useful if we defend the argument against the possible objection that 
the contribution to the integral in (4) from small values of n’ may actually be less 
than that from values of n’ near n. The mean square modulus of the latter con- 
tribution can be shown, by a calculation similar to that given for the former con- 

tribution, to be +$nZB(n)B(n). It is possible to make 2 arbitrarily large, for 
fixed values of e, x, v and K ,  simply by increasing the length scale L in such a way 
as to keep ($)8/L constant, and byincreasing82inproportion to$. Thus it would 
appear that, for any fixed n, 9 could be made so large that the contribution from 
values of n’ near n would dominate. However, the validity of the result which has 
been obtained is not affected, because in the circumstances in which this contribu- 
tion from values of n‘ near n seems to be dominant the term aB/at is no longer 
negligible, and in fact cancels out this part of the integral. The reason for this is 
that the Fourier transforms are taken with respect to fixed axes, and the small- 
scale fluctuations in temperature, and the small eddies which cause them, are 
consequently being translated at  a speed of order (u”)& by the large eddies. The 
integral in (4) therefore has one part which expresses the rates of change of 
Fourier components due to observation from fixed axes, and one part which 
expresses the actual production of fluctuations of temperature at wave-number 
n to balance the conductive decay; thus we can ignore the term aB/at, and the 
corresponding part of the integral in (a), and the calculation leading to (9) remains 
valid. 

The above hypothesis about the interaction between the fields of u and 8 may 
be given another interpretation, which is mechanically more direct and conse- 
quently more illuminating. It will be noticed from (7) that the interaction has 
been calculated as if equation (3) were replaced by 

* 

u . VT = Kv2e, (10) 
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where V T  is independent of position x and fluctuates isotropically from one 
realization to another with a mean-square value 

- -  
( v T ) ~  = (vey = X / 2 K .  (11) 

In  other words, we have assumed in effect that the supply of @-stuff to 8-varia- 
tions on any length scale between ( K ~ / s ) $  and (v3/e)* comes primarily from the 
convection due to motion on the same length scale in the presence of a uniform 
gradient of 8, this gradient being equal in magnitude to the root-mean-square 
value of V8. The requirement that the length scale be small compared with (tc3/e)$ 
is needed because the gradient on which the convection acts would not otherwise 
be uniform with magnitude [(oe)8]*, and the requirement that it be large com- 
pared with (v3/le)* is needed because the motion acting on the gradient would 
otherwise be too feeble for this to be the dominant method of supplying @-stuff. 
The action of a velocity field of length scale n-1 on a uniform gradient of 8 of 
magnitude V T  produces variations of 8 which are described accurately by the 
equation 

ae -+ u. vo +u. VT = Kv2e, 
at 

and, so it appears, approximately by the low PBclet number form (10) when 
n 9 ( 4 ~ 3 ) ) .  

An interesting aspect of this state of affairs is that the action of convection is 
directly influenced by the conduction process and cannot be considered separately. 
The effect of conduction is so strong as to ‘ balance ’ approximately any tendency 
for the convection to change the distribution of 8. An example of a case in which 
(10) is the appropriate equation is provided by Townsend’s calculation (un- 
published, and used in a paper by Clarke & Rothschild 1957) of the increase in the 
rate of diffusion of oxygen down a concentration gradient in semen caused by the 
swimming of spermatozoa; as (10) shows by its form, the magnitude of the 
fluctuations in 8 is proportional to K-1 and the transfer of oxygen by convective 
movementwhich may be expressed by an eddy conductivity-is likewise pro- 
portional to K-1. The transfer of @-stuff across the &spectrum due to the action 
of convection, as described above, may also be represented in terms of an ‘eddy 
conductivity’ (in the sense made familiar by Heisenberg). The total rate of 
destruction of @-stuff in all Fourier components with wave-numbers above n by 
conductivity is seen from (8) to be given by the alternative expressions 

showing that the effective eddy conductivity due to eddies of length scale smaller 
than n-l acting on components of 8 with length scale greater than n-l is 
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again inversely proportional to K. The absence of any dependence of the effective 
transfer of kinetic energy on molecular viscosity in the corresponding expression 
for the eddy viscosity put forward by Heisenberg, namely 

is presumably the reason for its failure at large values of n at which the effective 
Reynolds number is small, as has been suggested elsewhere (Townsend 1951). 
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